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Abstract. This paper assesses the capability of an spectrometer used
in field experiments of soybean, maize and wheat. The objective of this
work is to select different wavelengths intervals of the spectral reflectance
curve, within the range 632-1125 nm, as features for classification using
machine learning methods. Two different classifications are presented,
species selection and growth stage identification. For species classifica-
tion accuracy of 92% is reached, while 99% is obtained for stage classi-
fication. In addition we propose a new index that outperforms analyzed
established vegetation indices, which shows the potential advantage of
using this type of devices.

Keywords: spectrometry, remote sensing, NIR, spectral feature selec-
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1 Introduction

The use of remote sensors in agronomy, for identification and characterization of
crops, has been increasing in the recent years. For these purposes, different plat-
forms have been employed for data collection at multiple scales. For instance,
Virlet et al.[1] developed a terrestrial phenotyping platform based on thermal
fluorescent chambers, chlorophyll fluorescence, hyperspectral cameras and 3D
laser scanners, in order to produce a description of canopy development across
the crops entire lifecycle. Sankaran et al. [2] predicted that the use of unmanned
aerial vehicle (UAV) based technology will grow exponentially in the next few
years, resulting in the development of robust aerial sensing-based crop pheno-
typing methods. Al-Yaari et al. [3] reported that remotely sensed satellite-based
passive microwave soil moisture is strongly related to leaf area index. Multispec-
tral cameras applied to any of these platforms are a good source of information,
however, they measure the intensity of light at a few particular wavelengths.

The vegetation indices employed for crops characterization are generally com-
puted from Red and near-infrared (NIR) spectrum zones [4]. The relationship
between NIR and Red, Ratio Vegetation Index (RVI), was proposed in [5] to
estimate the leaf area index (LAI) in forests. Tucker [6] defined the normalized
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difference vegetation index (NDVI), which can be used to monitor the pho-
tosynthetically active biomass of plant canopies. Currently, NDVI is the most
used index. To minimize soil brightness influences from the indices of spectral
vegetation, Huete [7] applied the Soil-Adjusted Vegetation Index (SAVI) and
added a correction factor according to the LAI and coverage. The modified SAVI
(MSAVI) described in [8] replaces the correction factor of the SAVI by a function
that increases the dynamic range and reduces the background effects of the soil.
Spectrometers can measure spectral reflectance over an interval of the electro-
magnetic spectrum with high wavelength selectivity. This capability allows an
in-depth analysis of the spectrum, for instance, Lorenzen et al.[9] used different
intervals of the reflectance spectrum separately to detect leaves infected with
mildew in barley. In addition, the traditional vegetation indices (i.e. NDVI, RVI,
SAVI, MSAVI) can be computed from the spectral reflectance curve obtained
with spectrometers [10, 11]. The high wavelength selectivity of the spectrometer
also enables the design of new vegetation indices [6].

On the other hand, Machine Learning Algorithms (MLA) allow to predict and
project the status of crops over vast extensions of land by using data gathered
through remote sensing techniques. In Pantazi et al. [12] wheat yield is predicted
using MLA through satellite computed NDVI and hyperspectral images. Yuan
et al. [13] used Artificial Neural Networks (ANN), Random Forest (RF), and
Support Vector Machine (SVM) regression to predict LAI in soybean (Glycine
max (L.) Merr.) crops through hyperspectral remote sensing. Gao et al. [14]
used RF to distinguish maize (Zea mays), Convolvulus arvensis, Rumex sp. and
Cirsium arvense based on NIR hyperspectral images.

The objective of this paper is to select different wavelength intervals of the
spectral reflectance curve, within the range 632-1125 nm, of soybean, maize and
wheat (Triticum aestivum L.) crops for classification using machine learning
methods. Data is obtained using an spectrometer from field experiments in the
Pampas regions of Argentina. The crop classification technique proposed in this
paper, based on the reflectance spectrum, is evaluated for two different applica-
tions, (i) species identification and (ii) growth stage detection of soybean crops.
These numerical experiments are carried out considering SVM with linear ker-
nel (SVMLIN), RF and ANN classification methods. Besides, in order to show
the potential advantage of using a spectrometer for characterizing crops, a new
vegetation index is proposed.

2 Materials and methods

2.1 Datasets

Soybean data was collected from plots in Conesa (33◦ 35’ S , 60◦ 18’W) and
Gilbert (32◦ 27’S, 58◦ 58’ W). Maize data was obtained from plots in Santa
Fe (31◦ 38’ S, 60◦ 40’ W). Wheat data was obtained from plots in Pergamino
(33◦ 51’ S, 60◦ 32’ W). Experimental details are shown in table 1. All Field
experiments were conducted following a randomized complete block design. All
measurements were taken between 09:30 and 12:00.
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Dataset 1: The spectral reflectance curve dataset for species classification con-
tained all samples reported in table 1. Since we have different number of spectra
curves per crop specie, the unbalanced dataset was balanced using bootstrap
resampling [15].
Dataset 2: The dataset for stage classification consisted on 141 samples of soy-
bean collected from Conesa and Gilbert (see table 1). Plants on 25.01.2017 were
in vegetative stage, while on 13.01.2017 were in early reproductive stage (R1-2).
Data gathered during March was from late reproductive stages (R5-6)[16].

Table 1. Experimental details

Crop Site C/MG PDate RD PD Soil DCD SCC

Maize Santa Fe - 06.01.2017 50 8 Sandy loam 16.02.2017 23
Soybean Gilbert 5 16.11.2016 52 6,2 Vertisol 13.01.2017 18

06.03.2017 24
Soybean Conesa 5 11.11.2016 52 6,2 Vertic Argiudoll 25.01.2017 60

01.03.2017 39
Wheat Pergamino SC 26.06.2017 20 200 Typic Argiudoll 15.09.2017 206

LC 20.07.2017 15.09.2017 206

C/MG: Cycle/Maturity group, PDate: Planting dates, RD: Row distance [cm], PD:
Plant density [plants/m2], DCD: Data collection dates, SCC: Spectra curves collected,
SC: short-cycle, LC: long-cycle

2.2 Measuring spectral reflectance curve

In this study, the spectral reflectance curve of the crop was obtained through a
portable spectrometer (STS-NIR, Ocean Optics. Florida, USA). The spectrom-
eter generates a vector of 1024 spectral intensities, which are measured from
632nm to 1125nm, with an optical resolution of 3nm and quantized to 14 bits.
In order to measure the spectral reflectance curve of crops, the spectra of a white
reference material (WRM) is acquired after each crop measurement. Three mea-
suring alternatives were initially proposed. For the first two alternatives the
entrance slit was placed 3 cm above a leaf, one above the most recent fully de-
veloped leaf, and the other above the lower-most leaf. The third alternative had
the entrance slit 50cm above the crop, perpendicular to the soil surface. After
preliminary tests, we concluded that the third alternative provided better re-
peatability, adopting it as the method for all measurements in this study.
The integration time of the spectrometer was adjusted in order to avoid satu-
ration of the WRM. The electrical noise was measured through the occlusion
of the spectrometer’s entrance slit. This electrical noise is then subtracted from
the WRM and crop measurements. The crop reflectance was calculated as the
ratio between energy reflected by the crop and energy incident on the crop (solar
irradiation) [17] using equation 1, where R is the relative spectral reflectance
for each wavelength, C represents the energy reflected by the crop, W represents
the energy reflected by the WRM and B represents the electrical noise.
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R =
C −B

W −B
(1)

2.3 Spectral reflectance curve characterization

In figure 1 the wavelength ranges to be considered in this study are shown, from
now on these ranges will be called “features”. Figure 1 corresponds to a typical
soybean spectral reflectance curve and is shown here only for the purpose to
characterize the spectral curve, defining wavelength ranges and the correspond-
ing features.

Fig. 1. Spectral reflectance curve of soybean (black solid line). Features: 1 solid blue
line, 2 solid green line, 3 solid red line, 4 dashed blue line, 5 dashed red line.

Feature 1 (R) is obtained by computing the mean reflectance between 640 and
670 nm. The spectral band between 680 nm and 755 nm is evaluated through
its first-order derivative. This interval is divided in three parts (680-721 nm,
721-740 nm and 740-755 nm) to evaluate the rate of change of the reflectance
in these three wavelength ranges, resulting in Feature 2 (dA), Feature 3 (dB)
and Feature 4 (dC), respectively. The derivatives are obtained by computing
the slope for consecutive points, then the mean over each interval is calculated.
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Feature 5 (NIR) is the mean for reflectance values between 850 and 880 nm,
representing the near-infrared portion of the curve. Features 1 and 5 wavelengths
were chosen to be equivalent to the wavelengths of the Operational Land Imager
spectral bands from Landsat 8 [18]. Eight different combinations of features were
considered for both experiments. In Table 2 these combinations are shown (S1
to S8).

To assess the performance of the features we propose in this work, we com-
pare their classification results against classification derived from other datasets.
For this purpose different established vegetation indices were selected, i.e. RVI
[5], NDVI [6], SAVI [7] and MSAVI [8] (see equations 2, 3, 4 and 5 respectively),
and classification performed. The coefficient L in equation 4 is the soil brightness
correction factor which was set to 0.5 to accommodate the different conditions
of the measured crops.

RVI =
NIR

R
(2)

NDVI =
NIR-R

NIR+R
(3)

SAVI =
NIR - R

NIR+R+L
(1+L) (4)

MSAVI =
2.NIR + 1−

√
(2.NIR + 1)2 − 8(NIR-R)

2
(5)

2.4 Machine Learning methods and metrics

In this study the R software environment was used for implementation, training
and validation of machine learning algorithms and statistical analysis. Overall
classification accuracy was the metric chosen to evaluate model performance and
10-fold cross validation was used to provide a generalization measurement of this
metric. The accuracy shown throughout this work is the average accuracy for the
test data of all folds (fold collection). Feature importance is measured through
the mean decrease Gini coefficient (MDG) [19]. Different feature sets for each
machine learning algorithm were tested for statistical significance (p<0.05) with
Student’s t-test.

Artificial Neural Network Algorithm. This algorithm is based on layers of
artificial neurons consisting commonly on an input layer, one or more hidden lay-
ers and an output layer [20]. ANN iterates over the training set updating weights
until a stopping criterion is met. A single hidden layer neural network was pro-
posed, the training process is done via the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) optimization algorithm, a Quasi-Newton method that overcomes some
of the limitations of plain gradient descent by seeking the second derivative (a
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stationary point) of the objective function. The number of input neurons is set
to be equal to the number of considered features. One-hot encoding is used for
the output layer, each neuron representing a possible classification value. A grid
search of 2, 3, 4 and 5 neurons in the hidden layer and weight decay values
from 1.10−6 to 1.10−1 for species classification considering S8 was used to select
the best set of parameters. The best performance was obtained with a hidden
layer of 4 neurons and a weight decay factor of 1.10−3 which were chosen for all
models.

Support Vector Machine Algorithm. This algorithm was developed based
on statistical learning theory. It consists on obtaining an optimal hyperplane
that separates classes and generalizes well [21]. The parameters to set include
the kernel function and cost value. In this experiment a linear kernel was used
with a cost value of 5 after a grid search from 1.10−1 to 1.103.

Random Forest This algorithm is based on training an ensemble of decision
tree algorithms with bootstrapped samples and voting for the most probable
class. The algorithm relies on using a random selection of features to split each
node. Random Forest has the number of trees and number of features selected at
each split. A large number of trees produce a limiting value of generalization error
but do not produce overfit [22]. The minimum number of trees from which the
accuracy stabilizes is 100, a number of 500 trees was chosen. During classification
the subspace dimensionality for RF is rather small, in this work

√
p was selected,

where p is the total number of predictors.

3 Results

3.1 Species classification

In this section the dataset 1 is used to identify different species (soybean, maize
and wheat) for all measurement dates, through three different MLA (as men-
tioned in section 2.4). The implemented procedure for defining a feature set con-
sists in adding one by one different features from the field collected spectrum,
as predictor variables for the MLAs. We started considering only two features
(R + NIR, S1 in table 2) up to a collection of five features (S8 in table 2).
Accuracies and standard deviations for feature set 1 to 8 are presented in Table
2. Results are ordered from lower to higher accuracy. We can observe that the
three tested MLAs follow the same accuracy sequence, from S1 to S8. Based
on these results, S8 was selected as the feature set for both, species and stage
classification.
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Table 2. Species Classification Accuracy [%] and Standard Deviation (SD) for Sup-
port Vector Machine (SVMLIN), Random Forest (RF) and Artificial Neural Networks
(ANN), using different feature sets.

Spectrum Feature set SVMLIN SD RF SD ANN SD

S1 R + NIR 52.1 3.4 87.7 4.1 56.4 6.2
S2 R + NIR + dA 65.2 4.7 89.0 4.0 71.7 2.4
S3 R + NIR + dB 67.6 4.4 89.0 3.1 73.9 5.5
S4 R + NIR + dC 71.9 3.2 90.6 2.3 78.9 5.3
S5 R + NIR + dA + dB 71.7 3.9 90.7 2.8 82.2 3.0
S6 R + NIR + dB + dC 76.3 2.8 90.2 2.4 84.8 2.7
S7 R + NIR + dA + dC 86.3 2.1 92.3 2.3 91.2 2.8
S8 R + NIR + dA + dB + dC 87.2 2.6 92.8 2.3 92.7 4.1

In order to assess the S8 feature set performance for species classification
a comparison with established vegetation indices is performed. Figure 2 shows
the accuracy of each MLA (RF, ANN and SVMLIN) considering the S8 feature
set and the established vegetation indices described in section 2.3 (NDVI, RVI,
SAVI, and MSAVI). RF was the best-performing method for S8 and the 4 veg-
etation indices. S8 attained the highest accuracies for the three tested MLAs,
reaching an accuracy of 92% for RF species classification, followed by the RVI
index (89%). We checked that the difference between the RF-S8 and RF-RVI re-
sults are statistically significant (p=0.025). Besides, to describe the performance
of the RF-S8 versus RF-RVI regarding actual and predicted classifications for
each species, we present the confusion matrices for RF-S8 and RF-RVI (Table 3
and Table 4, respectively). Soybean and maize reached accuracies very close to
100% for both RF-S8 and RF-RVI. In the case of wheat RF-S8 reaches a 91%
of accuracy, while RF-RVI attains a 77%, with a class error of 23%.
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Fig. 2. Species classification accuracy for S8, and established vegetation indices
(MSAVI, NDVI, RVI, SAVI), using ANN, RF and SVMLIN

Table 3. Confusion matrix for S8. Random Forest

True
Predicted

Soybean Maize Wheat

Soybean 0.99 0.00 0.01
Maize 0.00 1.00 0.00

Wheat 0.09 0.00 0.91

Table 4. Confusion matrix for RVI. Random Forest

True
Predicted

Soybean Maize Wheat

Soybean 0.98 0.00 0.02
Maize 0.00 0.98 0.02

Wheat 0.19 0.04 0.77

New index proposal. A potential advantage of using a field spectrometer is
that it allows for the definition of new indices, based on the ability to analyse
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the spectral reflectance curve with a wavelength resolution of about 1nm. In this
section we propose a new index as the ratio between the two most important
features in S8.
To measure how each feature contributes to S8 we performed a variable selection
using Mean Decrease Gini coefficients (MDG). In Table 5 MDG for S8 is shown.
Feature importance ranking is then used to define a new index, dCdA, which
consists in the ratio between dC (MDG=179.80) and dA (MDG=235.43), as
shown in equation 6.

dCdA =
dC

dA
(6)

Table 5. Mean decrease Gini coefficient for S8. Random Forest method

Feature MDG

dA 235.43
dC 179.80

Red 148.57
NIR 147.70

dB 111.83

In figure 3 results of species classification with dCdA are shown. In figure 3a
the performance of S8 is compared to S8+dCdA. We observed that S8+dCdA
for ANN increases accuracy up to 97%. Statistical analysis of S8 and S8+dCdA,
for all the tested MLAs showed significant differences (p-SVMLIN=2.5.10−4 ,
p-ANN=8.3.10−6 , p-RF=0.0010).
To evaluate the contribution of dCdA, in Table 6 we show MDG coefficients for
each feature making up S8+dCdA. Features ranking results indicate that dCdA
is the most relevant component of S8+dCdA.
We also tested dCdA as a single index for species classification. For RF, dCdA
performs as the second best index after RVI, but results between both indices are
not statistically different (p> 0.05). Moreover, accuracies for dCdA are better
than for any other vegetation index for ANN and SVMLIN. These results are
shown in figure 3b.
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(b) Accuracy in species prediction for
dCdA as a single index and RVI.

Fig. 3. Performance of dCdA

Table 6. Mean decrease Gini coefficient for S8 + dCdA. Random Forest method

Feature MDG

dCdA 313.21
dA 136.43

R 118.28
dC 91.83

NIR 87.82
dB 75.83

4 Stage classification

In this section the dataset 2 is used to classify different soybean growth stages.
This dataset comprises samples of three different stages of soybean, vegetative,
early reproductive and late reproductive stages.
The same three MLAs as in section 2.4 are tested here, and the spectrum feature
set is S8. The accuracies attained by each MLA for S8 and the selected vege-
tation indices are presented in figure 4. Considering RF, S8 showed significant
differences to the best performing index NDVI (p=0.0008). Regarding S8 results,
ANN had the highest accuracy. RF was the best performing algorithm for all
vegetative indices, with RVI as the best performing vegetation index.
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Fig. 4. Soybean growth stages classification accuracy for S8, and established vegetation
indices (MSAVI, NDVI, RVI, SAVI), using ANN, RF and SVMLIN
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Fig. 5. Predicted accuracy of soybean growth stages considering the proposed index
dCdA
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The index proposed in the previous section is also assessed for stage classifi-
cation. Since S8 already provided a very high accuracy, the addition of dCdA did
not provide statistically different classification results (figure 5), p > 0.05 was
obtained for the three MLAs. Performance of dCdA as a single index was com-
pared to RVI, the best performing vegetation index (figure 5b). For RF, dCdA
reaches a higher stage classification accuracy than RVI (96% accuracy for dCdA,
82% for RVI), with stylistically significant difference results (p= 8.1.10−6). All
three MLAs analysed followed the same behaviour.
In Table 7 we show the importance of dCdA as a feature, when we consider
S8+dCdA. dCdA is ranked as the most important feature in the considered
feature set.

Table 7. Mean Decrease Gini for S8 + dCdA. Random Forest method

Feature MDG

dCdA 48.41
dC 26.19
R 19.33

dB 12.08
NIR 6.69
dA 6.66

5 Discussion and Conclusions

This work focuses on the assessment of a proposed feature set based on NIR
spectral reflectance curves obtained from field experiments, for the classification
of species (maize, soybean and wheat) and soybean growth stages (vegetative,
early and late reproductive phases). Classification is done by applying three
different MLAs, i.e. RF, ANN and SVMLIN.

Mean values (R, NIR), and first derivatives (dA, dB, dC) of the reflectance
data are considered (we call them features) for certain ranges of wavelengths.
These features are then grouped in sets, from S1 to S8 (Table 2), and classifica-
tion accuracies are ranked. Results are presented for S8 since it leads to much
better classification performance.

For species classification, RF is the best-performing MLA for S8 and for all
the tested vegetation indices. The highest accuracy is reached by RF-S8 (92%),
while the best performing vegetation index is the RF-RVI index (89%). Recently
(June 2018), Gao et al.[14] used RF to classify among maize and three weed
species using laboratory hyperspectral data. The authors achieved accuracies
between 69% and 100% which are similar to the performance we obtained for
RF-S8. Fletcher et al. [23] also used RF on spectral reflectance curves in the
range of 350-2500 nm. From this range they proposed 16 features to identify
between two weed species and soybean, obtaining overall accuracies between
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93% and 100%. Fletcher et al. conducted greenhouse experiments and collected
data from potted plants with a spectroradiometer. Our work achieved similar
accuracies on less controlled conditions.

In this work, for stage classification the best result is obtained for ANN-
S8 (99%), while the best performing vegetation index is RF-RVI with 82% of
accuracy. It must be noted that differences between MLAs for S8 are not rele-
vant, while differences between MLAs for any vegetation index may scale up to
30%. This fact shows that a collection of field spectral input data may be more
representative of the classes to be grouped than information given by single veg-
etation indices. To the best of the author’s knowledge no recent results have
been published for soybean stage classification using spectral data and MLAs.

In addition we propose a new index, dCdA, as the ratio between the two best
ranked features in S8. Accuracy for species classification obtained including this
index as an additional feature to S8 were higher than those obtained without
it. Moreover, dCdA as a single index, performs similarly to the best performing
single vegetation index for species classification. For stage classification, dCdA
outperforms every single vegetation index.

The use of spectrometry allows the selection of a feature set from the spec-
tral reflectance curve for the classification of species and stage through machine
learning algorithms. The achieved performance of the proposed feature set is
similar or better when compared to established vegetation indices.

Based on both recent research (Burkart et al [24]) and the results presented in
this work, we aim to extend this field spectroscopy technique, as a remote sensing
analysis, from plot-level to farm-level by adding spectrometers to be carried on-
board unmanned aerial vehicles (UAV). Compared to manual acquisition, UAVs
will allow high throughput crop data collection, over larger areas.
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