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Abstract. This project was focused on designing a tool for optimizing
complex transactions in a traditional bank accounts, Bitcoin wallet ac-
counts and Bitcoin exchanges. The challenges include transference fees
eroding the amounts transferred, Bitcoin volatility and arbitrage. The
tool should support hundreds of accounts with each account identified by
a bank or exchange, and a currency. The basic user-case, we call it Debit
Scenario, appears when an account consumes it capital and has very
little funding (sink or demand account), then the user set a minimum
funding for the account, and we need to balance all the accounts of the
network, using many currency circulations though many paths to satisfy
the specified funding limits. Another user case, we called it Custodian
Scenario, is when certain accounts (i.e. supply or non-custodians) has
upper limit on the amount of capital so we need to distribute the excess
value in other accounts (i.e. demand or custodians) of the network. The
problem was modelled as a multi-commodity min-cost max-flow prob-
lem with specific constraints including arbitrage information, and solved
with linear programming. Simple and complex numerical scenarios are
presented too.

Keywords: financial networks, optimization, Bitcoin, minimum cost
circulation

1 Introduction

The Bitcoin and cryptocurrencies market is not very mature, lack of liquidity and
price stability appears on a daily or weekly basis. Also, the regulatory landscape
is very unstable with country and regulations changing very often. So, when
funding bank accounts related to Bitcoin wallet operation you need to traverse
a complex network of traditional banking, wire transfers and startup exchanges
that offer a diversity of fees and delays on the transactions.

⋆⋆ This research was conducted as part of my Quant Trainee program at Xapo Holdings
Ltd., during August-December 2017, and was presented as Capstone Project for the
Master in Science of Financial Engineering at Stevens Institue of Technology. The
project was directed by Professor Dr. Khaldoun Khashanah and I want to thank spe-
cially Wenceslao Casares and Federico Murrone from Xapo for the continous support
of this project and discussions on many of the details of the problem statement.
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A tool for generating execution plans for transferring funds across the fi-
nancial network satisfying certain limits can be modelled as an Optimization
Problem and can be very useful for the daily or weekly operation of individu-
als and companies providing custodian and other financial services. Traditional
consumer banks do not offer high speed intraday transactions with other banks
so we are only concerned with generating a daily or weekly execution plan. Al-
though we are optimizing cost, some exploratory work on optimizing time has
also been done, but is not detailed in this report. Also arbitrage opportunities
must be taken into consideration to alleviate cost and make some profit.

In the rest of the report we show the literature review in Section 2. We show
a mathematical model on Section 3, numerical results in Section 4 and including
concluding remarks in Section 6.

2 Literature Review

The min-cost circulation problems have been investigated in the early day of
maximum flow algorithms (Even et al., 1976; Truemper, 1977; Christofides et al.,
1979). Namely, the multi-commodity integer flow problem was shown to be NP-
complete even if the number of commodities is two, for both directed and undi-
rected graphs (Even et al., 1976). Also, Truemper (1977) presents the relations
between max flow positive gains problem with min cost in simple graphs. On
Christofides et al. (1979) the authors presents how the problems of space, time
and interest arbitrage can be solved using graph-theoretic algorithms. In our
case, we will be using linear programming to solve a special case (one commod-
ity per node) of the multi-commodity min cost circulation with arbitrage and
fees (positive and negative gains) problem.

We analyzed the literature regarding foreign exchange arbitrage in complex
networks and the circulation problem for the general multi-commodity and non-
conservative gain-loss variations. Traditional triangular arbitrage assumes there
is clique within a single exchange, any account with currency X can communicate
with other accounts with currency Y by trading instantly. In our case, we are
considering both triangular and market arbitrage when the different banks or
exchanges quote different rates.

Lecture notes from advanced courses provide insight on current formulations
of general circulation problems (Karger, 2012; Bansal, 2012; Williamson, 2012;
Kingsford, Kingsford). Thesis from Wayne (2002) and a survey from Shigeno
(2004) provides a complete detailed explanation of algorithmic for this kind of
problems.

On the theoretical side, recent advancements have shown that general arbi-
trage problems are NP-complete (Palasek, 2014), and that ensembles of arbitrage-
free networks can be a useful tool for financial models (Cai and Deng, 2016).

Our research and implementation follow the recent efforts to tackle specific
circulation models adapted to foreign exchange arbitrage (Jones, 2001) and in-
terest rate arbitrage (Cantú and Possani, 2012). These endeavors are basically
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a continuation of previous research, as mentioned earlier, by Christofides et al.
(1979).

Very recently, Olver and Végh (2016) has shown a strongly polynomial algo-
rithm for the generalized flow maximization problem.

3 Model

3.1 Basic Model

The problem we are solving is a generalized version of the max-flow circula-
tion problem that includes cost and many commodities. Logically, we want to
minimize cost, then is a min-cost max-flow integer circulation problem.

We are considering an integer flow, because we know that this case can be
solved efficiently (Wayne, 2002). We can model the problem as an integer flow
because we can use small fractions of a cent as minimum transactional atom.
For example, in the Bitcoin Financial Network the minimum atom is the satoshi
unit, with 100,000,000 satoshi = 1 bitcoin.

In our case we are solving a multi-commodity problem that is intractable
in the general case, but we are following a central reference (Wayne, 2002) that
solved the problem for a single commodity. The contribution of this paper is how
we transformed a specific multi-commodity problem into a single commodity
problem, including the possibility of arbitrage.

In the decision version of the problem, producing an integer flow satis-
fying all demands is NP-complete (Even et al., 1976).

Wayne (2002) models the non-conservative nature of the financial network is
modelled using a gain factor. Gain can be positive for arbitrage and negative for
fees charged by service providers.

In traditional networks, there is an implicit assumption that flow is con-
served on every arc. Many practical applications violate this conservation
assumption. Freight may be damaged or spoil in transit; fluid may leak
or evaporate. In generalized networks, each arc has a positive multiplier
associated with it, representing the fraction of flow that remains when it
is sent along that arc. The generalized maximum flow problem is iden-
tical to the traditional maximum flow problem, except that it can also
model networks which ”leak” flow.

Following Wayne (2002) directly we will model the circulation problem with
link gain with a multiplier in each link of the graph. In the original model there
are three link functions: capacity, cost, and gain. In our case the we only have
two functions: capacity and gain/loss. We incorporated the fee percentages into
the multiplicative gain function and the flat fees are incorporated into the linear
equations as a scalar offset.

In our model we only have one type of commodity, i.e. currency, per node. If
we have a two-currency account in one exchange we consider this case to be two
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different account nodes in our model. So, trading a currency for another is also
another link. This is sound because to exchange between different currencies also
pays fees. We also avoid a more general multi-commodity problem that is more
difficult to solve. So, each account has its own conversion to a base currency,
USD in our case, so we reduce the problem to a single-commodity problem.

Finally, the arbitrage situation is handled by introducing in the gain func-
tion the ratio rB/rA of the two exchange rates for an account link connecting
account A with account B. In the bibliography, a similar approach for account
rates and link arbitrage is called reduced prices (Karger, 2012), but is modelled
targeting supply chain, not currency circulation. So, we can say the contribution
of this research is converting from multi-commodity to single commodity and
considering arbitrage and fees for the specific case of one commodity per node.

The model is presented in the next section.

Definition 1. The input to the generalized minimum cost circulation problem
is a generalized network G = (V,E, c, g), where (V,E) is a directed graph with
node set V and arc set E, c ∶ E Ð→ R≥0 is a capacity function, g ∶ E Ð→ R is a
gain function. For notational convenience we assume that there are no parallel
arcs so that each arc can be uniquely specified by its endpoints. We let n = ∣V ∣
and m = ∣E∣. A generalized circulation or flow f ∶ E Ð→ R≥0 is a nonnegative
function that satisfies the flow conservation constraints:

∀v ∈ V ∶ ∑
w∈V ∶(v,w)∈E

f(v,w) = ∑
w∈V ∶(w,v)∈E

g(w, v)f(w, v)

All incoming flow to a node is flow is going out from the neighboring now
and multiplied by the gain function.

It is feasible if, in addition, it satisfies the capacity constraints:

∀(v,w) ∈ E ∶ f(v,w) ≤ c(v,w)

We can define the cost of a circulation f as

cost(f) = ∑
(v,w)∈E

f(v,w)[1 − g(w, v)]

Notice that 1−g(v,w) is the simple financial return of the that traversed edge.
For example, a −0.01 (1%) percent fee for a trade or transference, or a positive
0.02 (2%) percent gain if there is a big arbitrage scenario between two accounts
with the same currency. The generalized minimum cost circulation problem is to
find a feasible generalized circulation of minimum cost.

Although we defined an interesting problem, to make it more realistic, we
need to add supply and demand nodes, nodes generating excess commodity or
demanding an amount of commodity. In our model, we used balance upper and
lower constraints, but this can be translated to as excess supply on top of upper
maximum bound and excess demand below lower minimum desired balance.
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3.2 Complete Model

Because our final model has more constraints than the basic model, such includ-
ing a balance for each node and upper and lower constraints on the model, we
decided to directly implement the model using Linear Programming (Even et al.,
1976) and the Simplex Algorithmic, that has many robust implementations. The
other alternative was to extend the very efficient polynomial but specialized al-
gorithms. These are polynomial in time complexity, described by Wayne (2002)
and Karger (2012), which solve the problem by eliminating negative feedback
loops from the graph circulation. Eliminating flow-absorbing circuit algorithms
are very fast but the theory we assumed was beyond the scope of this final
project that wanted to target an industry problem with a robust solution. Sim-
plex solutions are provable slower but using native C/C++ implementations we
can scale to hundreds of nodes as desired.

So, we present the detailed minimization problem we solved using the Simplex
Algorithm.

Considering the problem with n = number of node accounts, m = number of
bank links, also noted arcs or edges:

Definition 2. We assume that the exchanges rates to base currency, USD, are
fixed constants for this problem:

– CCY) ccy(v1),..,ccy(vn) : currency name (foreign exchange or crypto) for
each node

– RATES) r(v1),..,r(vn) : currency rates to base currency for each node, for
example BTC/USD, how many American dollars we have for each bitcoin.

– BAL) b0(v1),..,b0(vn) : initial balance for each node;
– PFEE) fee(e1),..,fee(em), fee(ej) ∈ Q[0,1] : fractional fee per each link;
– FLAT) flat(e1),..,flat(em) : flat fee per each link, discounted after fee per-

centage is discounted.

– GAIN) g(ej) = g(v,w) = r(w)
r(v) (1 − fee(ei)), : gain by traversing the link,

considering fractional fees and price arbitrage.

Definition 3. We introduce the variables of the linear model:

– VAR0) bc(v1),..,bc(vn), : current balances for each node in their original
currency such as Bitcoin. We are not using theses variables in the model,
we just use the following base currency variables;

– VAR1) b(v1),..,b(vn), : current balances for each node in base currency,
b(vi) = bc(vi) ∗ r(vi);

– VAR2) t(v1),..,t(vn), : unknown target balances after unknown circulation;
– VAR3) f(v,w) for each (v,w) ∈ E, : unknown transferred cash-flow circula-

tion across each bank link, non-negative.

So, we have, considering VAR1 to VAR4, a total of 3∗n+m linear variables.
We have X = (x1, . . . , x3∗n+m).

Definition 4. The linear equality constraints (AeqX
T = beq) are:
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– EQ1) ∀i ∈ 1 . . . n, j ∈ 1 . . . n ∶ Ai,i = 1, Ai,j = 0, i ≠ j : b(vi) = b0(vi) current
balance is constant.

– EQ2)

∀v ∈ V ∶ ∑
u∈V ∶(u,v)∈E

[g(u, v)f(u, v) − flat(u, v)] − ∑
w∈V ∶(v,w)∈E

f(v,w) = t(v)−b(v)

: conservation of flow modulo gain (fees and arbitrage), in-going minus out-
going flow equals difference in balance.

Notice that we used the gain constants g(v,w) from Definition 2 to include
fees and arbitrage. Also in the following inequalities we do not include negative
values because we are not modeling negative liabilities.

Definition 5. The inequality constraints (AubX ≤ bub) are :

– INEQ1) i ∈ 1, . . . , n, ∥t(vi) − b(vi)∥ ≤maxDeltai : 2n equations;
– INEQ2) i ∈ 1, . . . , n, 0 ≤ t(vi) ≤maxBalancei : 2n equations;
– INEQ3) i ∈ 1, . . . , n, t(vi) ≥minBalancei ≥ 0 : n equations;
– INEQ4) j ∈ 1, . . . ,m, 0 ≤ f(ej) ≤ maxCapacityj, maximum capacity or

liquidity of the link, 2m equations.

Notice that there are no requirements for initial balances, can even be nega-
tive, because we assume the problem is that these initial balances have a problem
of excess or lack of capital, so we need to find the flow to reach adequate target
balances.

Definition 6. Target function to minimize is the summation of the following
functions:

– MIN1) maximum target balances: ∑
v∈V

−t(vi)
– MIN2) minimum flow: ∑

(v,w)∈E
f(v,w)

Notice that, there are no negative flows in the directed graph, although we
can support negative balances.

4 Numerical Experiments

We present some simple and complex scenarios to show the model is solved using
the linear programming implementation. We include a simple cost optimization
scenario, a simple arbitrage scenario and a complex scenario with dozens of
circulations.

When fractional or flat fees are not mentioned the default value is zero. If
upper limit on flow in a link is not mentioned is assumed to be boundless or very
large. If currency rates are not mentioned is assumed that they are the same for
all nodes with the same currency.
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4.1 Optimizing Cost

In this case, there is a demand of currency in node C and there is an excess
supply in A that can be used to satisfy the demand if we can traverse nodes
B or D. Depending on the cost and limits we might want to send the currency
across B, D or both.

Table 1. A simple minimum cost example with 4 nodes and 2 paths.

ccy b minBalance maxBalance

A USD 120 50 100

B USD 80 50 100

C USD 30 50 100

D USD 80 50 100

fee %

A→ B 1

A→D 1

B → C 1

D → C 2

Table 2. Simple cost scenario, diagram, and solution

A

B

D

C

1%

1%

1%

2%

f(v,w) f(v,w)[1 − g(v,w)]

A→ B 20.00 19.80

A→D 0.00 0.00

B → C 20.20 20.00

D → C 0.00 0.00

t(v) − b(v) t(v)

A −20.00 100.00

B -0.40 79.60

C 20.00 50.00

D 0.00 0.00

As we can see the intermediate node B was chosen because that path has
a combined fractional fee that is smaller. Notice that the flow with minimum
cost also uses cash from node B if we send all the currency we need from A we
are charged two hop fees for the complete amount, but in this case for a little
fraction we can only pay one fee, only on the second hop.

4.2 Arbitrage

Now we solve an arbitrage scenario including two currencies. In this case there is
a demand of currency (USD) in node F and there is an excess supply of Bitcoin
(BTC) in A that can be used to satisfy the demand if we can traverse nodes
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{B,C} or {D,E}. Depending on the cost, limits, and rates we might want to
send the currency across nodes {B,C}, {D,E} or both paths. For simplicity, we
assume zero fees on all links.

This scenario is designed to mimic the situation where we are moving BTC
from an exchange with lower rates (A) to an exchange with higher rates (B or
D), then we sell the BTC to get USD (nodes C or E) and finally we transfer
the USD dollar to a third bank.

Table 3. A simple arbitrage scenario, including 6 nodes and 2 paths. Remember we use
base currency USD for balances b(v) but we show BTC nodes in BTC for illustration
purposes.

ccy b bBTC minBalance maxBalance rate (USD)

A BTC 15,150 1.01 1 2 15,000

B BTC 15,100 1 1 2 15,100

C USD 50 − 50 100 1.00

D BTC 15,200 1 1 2 15,200

E USD 50 − 50 10 1.00

F USD 0 − 50 100 1.00

Table 4. A simple arbitrage scenario: solution diagram and optimal solution

A

B

D

C

E

F

0 BTC

0.003289 BTC

0 USD

50 USD

0 USD

50 USD

f(v,w) f(v,w)[1 − g(v,w)] fBTC(v,w)

A→D 49.34 50.00 0.003289

D → E 50.00 50.00 -

E → F 50.00 50.00 -

t(v) − b(v) t(v)

A −49.34 15100.66

B 0 15100

C 0 5

D 0 15200

E 0 50

F +50 50
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4.3 Complex scenario with an exponential number of positive flows

Finally, more numerical results but including a class of random graphs. As the
most simple class of non-trivial random directed graphs, we will generate optimal
circulation for directed graph where each account node has two incoming edges
coming from random neighbors. The cost of this kind of scenario will be analyzed
theoretically and verified empirically assuming a fixed fractional fee per edge
(1%), a fixed excess supply per account node (1 USD), and a single demanding
node with an established demand.

Each account node has two incoming directed edges, so in the worst-case
scenario, we have a directed tree flowing from the leaves to a single root node.
We will only have one sink node v demanding supply, the root of the tree. For
the tree, we have 2h − 2 nodes at distance h or smaller able to supply funds to
the root node.

If balance is bigger than the minimum then demand for this account node is
zero, and is negative if current balance is smaller than the minimum:

demand(v) ∶= 0 or minBalance(v) − b(v) if minBalance(v) ≥ b(v)

If demand has the following form:

demand(v) = 2k − 2

we know that we need at least nodes with distance k or smaller from the root
to satisfy the demand. For small fees, for example 0.01 (1%) or smaller, were the
fees as return is close the log-returns (??, log), we will observe that total cost is
at least a minimum of:

21 ∗ 1 ∗ fee + 22 ∗ 2 ∗ fee + . . . + 2k−1 ∗ (k − 1) ∗ fee

because 2 accounts need to hop 1 link to reach the demanding root node, at
least 4 nodes need to traverse 2 links to the reach the demanding node, etc. Can
be larger than this because as the fees leak some of the currency, extra nodes
will be needed to satisfy the demanding root account.

Arbitrage is not considered in this scenario, we have 4 different currencies
but all account nodes with the same currency share the same exchange rate. All
experiments in this subsection were run on a network of accounts with n = 262
and m = 515. The average running time for each single row was 1.934 seconds
on a personal computer.

Notice that although the demand was 50 USD, the method managed to find
a solution using an amount of BTC that was worth less than 50 USD in the
original exchange A. This is called spatial arbitrage (Christofides et al., 1979).
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Fig. 1. Visualization of example complex random directed network.

Table 5. Demand in USD versus Cost in USD for a 2-regular directed graph.

k Demand Analytical Cost Observed Cost

3 6 0.1000 0.1418

4 14 0.3400 0.4870

5 30 0.9800 1.4461

6 62 2.5800 3.7804

7 126 6.4200 9.3931

5 Implementation

We chose Excel 2016 with Visual Basic for Applications automated features for
the front-end of the application and Python 2.7 for the optimization back-end.
The GLPK optimization engine was used. It can be invoked from Python and
runs fast native C/C++ code. The alternative of using Python scipy.optimize.

linprog was included but the interface is very similar and providing much lower
speed.
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Fig. 2. Demand versus Cost for a 2-regular directed graph. Estimated minimum versus
empirical observations.
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Average Linear Programming running time for the 5 exponential scenarios
of Section 4.3 was 2.01 seconds on a personal computer with a dual 2.30GHz, 2
Core(s), 4 logical processors machine.

There are two users of the front-end: a Treasury Manager that inputs changes
in the constraints of the accounts and generates new execution plans using the
tool; and a Treasury Operator that executes the individual transactions of the
circulation plans and updates the balances. Remember that although many of
the Bitcoin operations can be automated, traditional banking is still done on a
manual basis, so the operator does most of the work manually. In the future,
maybe more banks will provide API to automate their services (BBVA, 2017).

6 Conclusion

A detailed model for minimum cost circulation on bank or exchanges network
transfer with multiple currencies was described and implemented using linear
programming.

The numerical results suggest that the implementation has scalability on
scenarios with an exponential growth in the number of transactions.
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Regarding liabilities the model supports negative balances but there is not
ownership of the debt, so further models need to be devised for debt.
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